Hyperbolic spaces have emerged as an effective manifold to learn representations due to their ability to efficiently represent hierarchical data structures, with little distortion, even for low-dimensional embeddings. In the chosen hyperbolic model, such as the Poincaré ball, classification is usually conducted by leveraging a signed distance function to the hyperbolic equivalent of a plane (gyroplanes) or by measuring the alignment to a virtual fixed prototype. We propose, in a deep learning context, to leverage a different characterization of a decision boundary: Horospheres, which are level-sets of the Busemann function. They are geometrically equivalent to spheres tangent to the boundary of the hyperbolic space on a virtual point akin to a prototype. Accordingly, we define a new horospherical layer that can be adapted to any neural network backbone. In previous works, prototypes are usually uniformly distributed without using a potentially available label hierarchy for the task at hand. We also propose a hierarchically informed method for positioning these prototypes, based on the Gromov-Wasserstein distance. We find that the combination of a good initialization and optimization of the prototypes improves the baseline performance for image classification on hierarchical datasets and in two semantic segmentation tasks, conducted on image and point cloud datasets.